Everywhere divergence of the one-sided ergodic Hilbert transform for circle rotations by Liouville numbers

نویسندگان

  • David Constantine
  • Joanna Furno
  • JOANNA FURNO
چکیده

We prove some results on the behavior of infinite sums of the form ∑ f ◦ T(x) 1 n , where T : S → S is an irrational circle rotation and f is a mean-zero function on S. In particular, we show that for a certain class of functions f , there are Liouville α for which this sum diverges everywhere and Liouville α for which the sum converges everywhere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Theorems over Sparse Random Subsequences

We prove an L subsequence ergodic theorem for sequences chosen by independent random selector variables, thereby showing the existence of universally L-good sequences nearly as sparse as the set of squares. We extend this theorem to a more general setting of measure-preserving group actions. In addition, we use the same technique to prove an L almost everywhere convergence result for a modulate...

متن کامل

Divergence of Combinatorial Averages and the Unboundedness of the Trilinear Hilbert Transform

Abstract. We consider multilinear averages in ergodic theory and harmonic analysis and prove their divergence in some range of L spaces. This contrasts with the positive behavior exhibited by these averages in a different range, as proved in [5]. We also prove that the trilinear Hilbert transform is unbounded in a similar range of L spaces. The underlying principle behind these constructions is...

متن کامل

On the convergence of the rotated one-sided ergodic Hilbert transform

Sufficient conditions have been given for the convergence in norm and a.e. of the ergodic Hilbert transform ([11], [5], [6]). Here we apply these conditions to the rotated ergodic Hilbert transform ∑ ∞ n=1 λ n n T f , where λ is a complex number of modulus 1. When T is a contraction in a Hilbert space, we show that the logarithmic Hausdorff dimension of the set of λ’s for which this series does...

متن کامل

Pointwise Convergence of the Ergodic Bilinear Hilbert Transform

Let X = (X,Σ,m, τ) be a dynamical system. We prove that the bilinear series ∑ ′N n=−N f(τnx)g(τ−nx) n converges almost everywhere for each f, g ∈ L(X). We also give a proof along the same lines of Bourgain’s analog result for averages.

متن کامل

Good modulating sequences for the ergodic Hilbert transform

This article investigates classes of bounded sequences of complex numbers that are universally good for the ergodic Hilbert transform in Lp-spaces, 2 ≤ p ≤ ∞. The class of bounded Besicovitch sequences satisfying a rate condition is among such sequence classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017